- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Goluguri, Rama Reddy (2)
-
Muñoz, Victor (2)
-
Sadqi, Mourad (2)
-
Ghosh, Catherine (1)
-
Nagpal, Suhani (1)
-
Tanielian, Benjamin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes. Recent findings are revealing the profound, unforeseen implications of such characteristics for the mechanisms of DNA interplay. In this review we discuss these implications and how they are shaping the eukaryotic transcription control paradigm into one of promiscuous signal recognition, highly dynamic interactions, heterogeneous DNA scanning, and multiprong conformational control.more » « lessFree, publicly-accessible full text available May 6, 2026
-
Goluguri, Rama Reddy; Sadqi, Mourad; Nagpal, Suhani; Muñoz, Victor (, bioRxiv)DNA scanning proteins slide on the DNA assisted by a clamping interface and uniquely recognize their cognate sequence motif. The transcription factors that control cell fate in eukaryotes must forgo these elements to gain access to both naked DNA and chromatin, so whether or how they scan DNA is unknown. Here we use single-molecule techniques to investigate DNA scanning by the Engrailed homeodomain (enHD) as paradigm of promiscuous recognition and open DNA interaction. We find that enHD scans DNA as fast and extensively as conventional scanners and 10,000,000 fold faster than expected for a continuous promiscuous slide. Our results indicate that such supercharged scanning involves stochastic alternants between local sequence sweeps of ∼85 bp and very rapid deployments to locations ∼500 bp afar. The scanning mechanism of enHD reveals a strategy perfectly suited for the highly complex environments of eukaryotic cells that might be generally used by pioneer transcription factors. TeaserEukaryotic transcription factors can efficiently scan DNA using a rather special mechanism based on promiscuous recognition.more » « less
An official website of the United States government
